46 research outputs found

    Multiuser Parallel Transmission with 1-tap Time Domain Beamforming by Millimeter Wave Massive Antenna Arrays

    Get PDF
    This paper investigates the feasibility of multiuser parallel transmission by sub-array beamforming using millimeter wave bands in which the Line-of-Sight (LoS) dominant channel environment is expected. Focusing on high beamforming gain provided by the massive antenna array, each sub-array conducts first eigenmode transmission and thus one stream is allocated per user without null steering. This paper also proposes 1-tap time domain beamforming (TDBF) as the same weight is applied to all frequency components. It reduces computation complexity as well as suppressing the effect of additive noise on weight derivation. Computer simulation results show that increasing the subarray spacing stably improves signal-to-interference power ratio (SIR) performance and that the proposed 1-tap TDBF can match the performance of the frequency domain first eigenmode transmission as a rigorous solution

    Frequency Domain Backoff for Continuous Beamforming Space Division Multiple Access on Massive MIMO Wireless Backhaul Systems

    Get PDF
    This paper newly proposes a frequency domain backoff scheme dedicated to continuous beamforming space division multiple access (CB-SDMA) on massive antenna systems for wireless entrance (MAS-WE). The entrance base station (EBS) has individual base band signal processing units for respective relay stations (RSs) to be accommodated. EBS then continuously applies beamforming weight to transmission/reception signals. CB-SDMA yields virtual point-to-point backhaul link where radio resource control messages and complicated multiuser scheduling are not required. This simplified structure allows RSs to work in a distributed manner. However, one issue remains to be resolved; overloaded multiple access resulting in collision due to its random access nature. The frequency domain backoff mechanism is introduced instead of the time domain one. It can flexibly avoid co-channel interference caused by excessive spatial multiplexing. Computer simulation verifies its superiority in terms of system throughput and packet delay

    Non–existence of some 4–dimensional Griesmer codes over finite fields

    Get PDF
    We prove the non--existence of [gq(4,d),4,d]q[g_q(4,d),4,d]_q codes for d=2q3rq22q+1d=2q^3-rq^2-2q+1 for 3r(q+1)/23 \le r \le (q+1)/2, q5q \ge 5; d=2q33q23q+1d=2q^3-3q^2-3q+1 for q9q \ge 9; d=2q34q23q+1d=2q^3-4q^2-3q+1 for q9q \ge 9; and d=q3q2rq2d=q^3-q^2-rq-2 with r=4,5r=4, 5 or 66 for q9q \ge 9, where gq(4,d)=i=03d/qig_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil. This yields that nq(4,d)=gq(4,d)+1n_q(4,d) = g_q(4,d)+1 for 2q33q23q+1d2q33q22q^3-3q^2-3q+1 \le d \le 2q^3-3q^2, 2q35q22q+1d2q35q22q^3-5q^2-2q+1 \le d \le 2q^3-5q^2 and q3q2rq2dq3q2rqq^3-q^2-rq-2 \le d \le q^3-q^2-rq with 4r64 \le r \le 6 for q9q \ge 9 and that nq(4,d)gq(4,d)+1n_q(4,d) \ge g_q(4,d)+1 for 2q3rq22q+1d2q3rq2q2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q for 3r(q+1)/23 \le r \le (q+1)/2, q5q \ge 5 and 2q34q23q+1d2q34q22q2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q for q9q \ge 9, where nq(4,d)n_q(4,d) denotes the minimum length nn for which an [n,4,d]q[n,4,d]_q code exists

    Throughput Maximization by Adaptive Switching with Modulation Coding Scheme and Frequency Symbol Spreading

    Get PDF
    It is required to realize higher transmission rate and higher reliability for mobile communication due to the increase in Internet use. However, wireless channel capacity can not be used with maximum efficiency due to fluctuating channels affected by shadowing, multipath fading and mobility.Adaptive modulation and coding (AMC) scheme is now commonly implemented to maximize the throughput performance under the given link qualities. Forward Error Correction (FEC) based link adaptation is effective to improve throughput in a lower SNR regime, however, it immolates maximal throughput in good channel condition. Frequency symbol spreading (FSS) has been proposed that can improve BER even without FEC. It fully exploits the frequency diversity gain by spreading symbol per subcarrier to all frequency components. This paper proposes a new adaptation control scheme for OFDM by switching FSS and legacy AMC. Simulation result verifies its maximized throughput performance harvesting both of frequency diversity gain and coding gain

    Throughput Maximization by Adaptive Switching with Modulation Coding Scheme and Frequency Symbol Spreading

    Get PDF
    It is required to realize higher transmission rate and higher reliability for mobile communication due to the increase in Internet use. However, wireless channel capacity can not be used with maximum efficiency due to fluctuating channels affected by shadowing, multipath fading and mobility.Adaptive modulation and coding (AMC) scheme is now commonly implemented to maximize the throughput performance under the given link qualities. Forward Error Correction (FEC) based link adaptation is effective to improve throughput in a lower SNR regime, however, it immolates maximal throughput in good channel condition. Frequency symbol spreading (FSS) has been proposed that can improve BER even without FEC. It fully exploits the frequency diversity gain by spreading symbol per subcarrier to all frequency components. This paper proposes a new adaptation control scheme for OFDM by switching FSS and legacy AMC. Simulation result verifies its maximized throughput performance harvesting both of frequency diversity gain and coding gain

    The Teaching of Singing in Meiji Period : Mainly on the contents of teaching

    Get PDF
    Additional file 3: Fig. S4. Spontaneous gp120 shedding from cell surface. The susceptibility of gp41 mutants to spontaneously shed gp120 was determined by flow cytometry and ELISA as described previously [79]. Briefly, culture medium of transiently transfected envelope expressing cells was exchanged for fresh medium containing Brefeldin A (BioLegend) and 0.2 % Sodium azide. Cells were then incubated for 15 h at 37˚C, 5 % CO2. (a) Level of envelope expression before and after incubation was compared by staining with 2G12. (b) Amount of gp120 released during incubation was determined by gp120 capture ELISA. As a positive control, cells expressing WT envelope was incubated with 20 µg/ml sCD4, which trigger gp120 shedding. Cells expressing SIV Env (SIV) and no Env (No Env) were used as negative control. The results are shown as the means ± standard errors of four replicas

    Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems

    No full text
    This paper proposes dynamic clustering and user scheduling for previously conceived inter-cluster interference cancellation scheme on ultra-high density distributed antenna system (UHD-DAS). UHD-DAS is composed of one central unit (CU) and densely deployed remote radio units (RUs) serving as small cell access points. It can enhance spatial spectral efficiency by alleviating traffic load imposed per radio unit; however, intenser small cell deployment revives the inter-cell interference (ICI) problem. Cell clustering, cooperation of multiple RUs, can mitigate ICI partially, whereas inter-cluster interference (ICLI) still limits its possible capacity. Simplified ICLI cancellation based on localized RU cooperation was previously proposed to mitigate interference globally. The resolved issue is that it required frequency reuse distance to fully obtain its interference cancellation ability. This paper introduces dynamic clustering with coordinated user scheduling to ensure reuse distance without extra frequency reuse. Joint dynamic clustering and ICLI cancellation can effectively work and almost reaches ideal performance as full cooperative spatial multiplexing transmission

    Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    No full text
    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement
    corecore